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KEY POINTS

|) We share a method called ‘resiliency’, which is a consensus
method for data binning for thematic / choropleth maps.

2) It helps users see multiple binning methods to ) highlight
consistent patterns and 2) detect where binning will matter the

MOost.

3) We implemented the method online in two different places.
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. Binning Strategies for Thematic Choropleth Maps

. Resiliency: Ensemble Method

. Demonstration

. Limitations, Future Work + Conclusion



A DATASET WITH THE SAME VALUES CAN BE BINNED DIFFERENTLY
US LIFE EXPECTANCY BY COUNTY (2021, CDC)
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CHOOSING A BINNING METHOD CAN BE DIFFICULT
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RELATED LITERATURE

Quantile and minimum boundary error are suited for general reading of epidemiological rate maps (Brewer and Pickle 2002).

Quartile, equal interval, standard deviation, and natural breaks are accurate for data sets with specific distributional
characteristics, but none of them accurately bin all types of distributions (Smith 1986).

Equal interval, natural breaks, standard deviation, quantiles, & pretty breaks are particularly common (Brewer and Pickle 2002).

Round-number bin breaks, which are easy to read and remember; can constrain the outputs of optimization algorithms that
have more significant digits than the map user would prefer or the data warrants (Monmonier 1982).

Genetic algorithms (Armstrong et al. 2003) and proximity-based (Monmonier 1973) binning methods, which promote spatially
compact and homogeneous regionalization on map, are less common but also important. The head/tail break system by Jiang
(2013) is a relatively new, helpful method.

--Marc Armstrong, Ningchuan Xiao, and David Bennett. Using genetic algorithms to create multicriteria class intervals for choropleth maps. Annals of the Association of American
Geographers, 93:595 — 623,09 2003.

--Cynthia A. Brewer and Linda Pickle. Evaluation of methods for classifying epidemiological data on choropleth maps in series. Annals of the Association of American Geographers,
92(4):662—-681, 2002.

--Richard M Smith. Comparing traditional methods for selecting class intervals on choropleth maps.The Professional Geographer, 38(1):62-67, 1986.

--Mark Monmonier. Maximum-difference barriers: An alternative numerical regionalization method. Geographical Analysis, 5(3):245-261, 1973.

--Mark Monmonier. Flat laxity, optimization, and rounding in the selection of class intervals. Cartographica: The International Journal for Geographic Information and Geovisualization,
19(1):16-27, 1982.

--Bin Jiang. Head/tail breaks:A new classification scheme for data with a heavy-tailed distribution. The Professional Geographer, 65(3), 482-494.201 3.



A SIMPLE ALGORITHM TO HELP HIGHLIGHT COMMON RESULTS
ACROSS METHODS + DETECT DISCREPANCIES

Algorithm 1 Resiliency

e @ N o s W N e
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W N E S e N0 kR W N = C

24

25

input :data values V, binning methods M, binning options O
output : resiliency bin breaks RB
// Compute bin breaks for all M
bin breaks B « { }
for method m in M do
| B[m| = CompuTEBINS(V, O, m)
// Determine bins for all V across all M
bin ids ID < { }
for value v in V do
for method m in M do
‘ ID[v|[m] = Ass1cenBin(v, B/m])
// Compute the frequency of each bin among all M
bin frequencies BF « { }
for value v in V do
| BF|v| = CoMpUTEBINFREQUENCY (ID/v])
// Place values in their most frequent bins
most frequent bins MFB < { }
for value v in V do
| MFB[v] = CoMPUTEMOSTFREQUENTBIN (BF/v/)
// Compute Resiliency
resiliency bin breaks RB < { }
working bin assignments WFB « MFB
while VaLipaTEBINS (RB) do
RB, WFB = ResoLveConFLicTs( WFB, RB)
return RB
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Frequency of Most Consistent Bin
across multiple binning methods.
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Geographies are placed in their most agreed-upon bin across multiple binning methods.
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RESILIENCY WEB INTERFACE

WEe'll examine US counties by different indicators

.edu/resiliency-app/#/app

//ocular.cc.gatech

Resiliency
Geographies are placed in their most agreed-upon bin across multiple binning methods.
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https://ocular.cc.gatech.edu/resiliency-app/#/app

Qo ‘__ Total Fertility Rate (children per women), 2022-23 Economic Survey, Government of India.
@) EQUAL INTERVAL ) GEOMETRIC INTERVAL @ QuANTILE () PERCENTILE

( MOST CONSISTENT BIN & FREQ.

e

Bin Freq

* Figure 1 Small multiples of choropleth maps showing “Total Fertility Rate (children per women)”
(M) in India [8] using established binning methods (A-H) and resiliency (I-L).



BINGURU: A |JAVASCRIPT PACKAGE

Arpit Narechania
9 | design visual interfaces that help users be more aware of their analytic & Fork v eee
behaviors and guide them towards their goals. | also develop tools that...

@ Public Edited Sep 10 MIT 1 fork 10 Likes

Tags #cartography  #binning  #classification  #choropleth  #visualization  #library  #javascript #GIS #map  #dataviz

Observable Notebook for users to BinGuru

fork and use with their own data for

BinGuru is a Javascript package with an API to several established data binning /
data classification methods, often used for visualizing data on choropleth maps. It

exploration + ed ucation: also includes an implementation of a new, consensus binning method, 'Resiliency".
Imports
https'//ObservabIehq'com/@’arpltnareCh binguru = » Module {BOXPLOT: "boxPlot", BinGuru: class, CK_MEANS: "ckMeans", DEFINED_INTERVAL: "definedInterval", EQUAL_INTERVAL: "equalInterval", EXP(
anla/blnguru-demo binguru = import('https://cdn.skypack.dev/binguru@l.@.@-alpha.18.8");
H import {InputGroup} from "@sethpipho/input-group" 8
° Via

import {InputGroup} from "@sethpipho/input-group";

https://github.com/arpitnarechania/bing  emed - #.)

uru embed = require("vega-embed@s")

Specify Inputs

rawDataFile Upload CSV file
(e.q. Choose File | No file chosen
https://raw.githubusercontent.com/nl4dv/nl4dv/master/examples/assets/data/euro.csv)


https://observablehq.com/@arpitnarechania/binguru-demo
https://observablehq.com/@arpitnarechania/binguru-demo
https://github.com/arpitnarechania/binguru
https://github.com/arpitnarechania/binguru
https://observablehq.com/@arpitnarechania/binguru-demo

LIMITATIONS

|) A mishmash of binning methods is not statistically-
motivated.

2) The results are difficult to explain to a broad audience.
3) Inputs can be subjectively chosen by the user.

4) Even when ‘all methods’ are used as inputs, “objective”
does not mean “correct’.




FUTURE WORK

|) Improved matching of input data distribution to a
suggested binning method.




Table 1. Classification Methods

Mean-
Standard

Deviation

Groups according to the distance to the
mean standard deviation of the dataset.
Using this method, the mean and
standard deviation are taken from the
dataset holistically. and the standard
deviation from the mean is used to
determine which class each data value
falls in. This method is useful for normally
distributed datasets in which classifying
data as "above average" or "below
average" makes a meaningful break in
the data. This method does not work well
with heavily skewed or non-normally
distributed data.

Mean-Standard Deviation classification is
implemented by calculating the mean
value of the dataset and the standard
deviation, placing class breaks at the
mean value and each standard deviation
value. In our example, calculate the mean
and standard deviation of the 72 data
values, place a break at the mean and
place additional breaks at the standard
deviations. The following class breaks
were created using QGIS (2017).

p=22.15

e=741 |

[ 1

Normally
distributed
data

Method Description Suggested
Use
10 15 20 25 30
Equal Class breaks at regular intervals along - - Uniformly
the number line at a set equivalent range. i i
Interval These breaks might be 20, 30, 40, etc, |L I distributed
where each class is used to represent an L EIEETNE (e data with
equivalent range of measured data
values. Classes are chosen regardless of familiar data
the data. Equal interval is easy to read
and understand: but it can be misleading Felid=s,
in that no information is given on the
distribution of the data within each
distinct class.
Method is calculated by taking the
highest data value minus the lowest data
value, and dividing by the number of
classes desired to get class breaks at
equivalent intervals. In this case, subtract
10 from 50, then divide by 4 to get
intervals of 10.
Quantiles | Equal humbers of data observations are i Evenly
placed into each category. Data is i
(Equal classified into groups like Top 20%, jlﬁh i distributed
c Upper-Middle 20%, Middle 20%, Lower-
ount) data and

Middle 20%, and Bottom 20%. This
method is easy for the map reader to
understand. Because there are equal
numbers of observations in each class,
the map will always produce
distinguishable patterns. It can be
misleading in that equal numbers of data
values are in each class, so outliers are
lost.

ordinal data

Maximum

Breaks

Breaks are placed at the largest intervals
between adjacent data values.This is an
easy to understand method that works
best with piecewise datasets with gaps.
This method does not work well with
skewed data.

To implement. the data values are
ordered from low to high and the
difference between sequential data
values are calculated. Breaks are placed
where the differences are the largest, and
the number of breaks is based on the
number of classes desired. In our
example. the largest breaks fall between
33 and 41 (8), 41 and 47. (6). and 47 and 50
(3). so we place our breaks at these
points.

10 15

Piecewise
and
clustered

data

Jenks-
Caspall &
Fisher-

Jenks

Algorithmically optimal breaks are placed
in data based on sums of deviations of
means between individual classes. Initial
breaks can be arbitrary and the algorithm
is approached iteratively by moving
values between classes until the smallest
sum values are received (Slocum et al.,
2005; Jenks, 1957). This minimizes
variance within each class and maximizes
variance between classes (Uiang, 2013).

Clustered
and skewed

data

Foster, M. (2019). Statistical Mapping (Enumeration, Normalization, Classification). The Geographic Information Science & Technology Body of Knowledge (2nd Quarter
2019 Edition), John P. Wilson (Ed.). DOI: 10.22224/qistbok/2019.2.2(link is external).



https://doi.org/10.22224/gistbok/2019.2.2

FUTURE WORK

|) Improved matching of input data distribution to a
suggested binning method.

2) More intuitive metrics and refinement of a global
output statistic.




FUTURE WORK

|) Improved matching of input data distribution to a
suggested binning method.

2) More intuitive metrics and refinement of a global
output statistic.

3) Documenting real world use cases.




CONCLUSIONS

|) We created an algorithm called ‘resiliency’, which is a
consensus method for data binning.

2) It helps users see a merged version of binning methods
to highlight consistent patterns and detect where binning
will matter the most.

3) We implemented the method as a javascript package and
a web tool.
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